ACCELERATED MULTI-CRITERIA DESIGN OPTIMIZATION OF AXIAL FLUX MOTORS WITH 3D FEA

Dr. Hossain Mohammadi¹, Dr. Radu Negrila², Dr. Eberhard Kull³

¹ Sr. Staff Systems Engineer, R&D Americas, Schaeffler ¹ Windsor, ON, ² Timisoara, Romania, ³ Regensburg, Germany

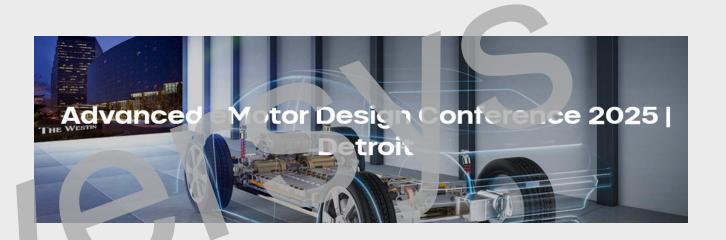
JMAG Advanced eMotor Design Conference

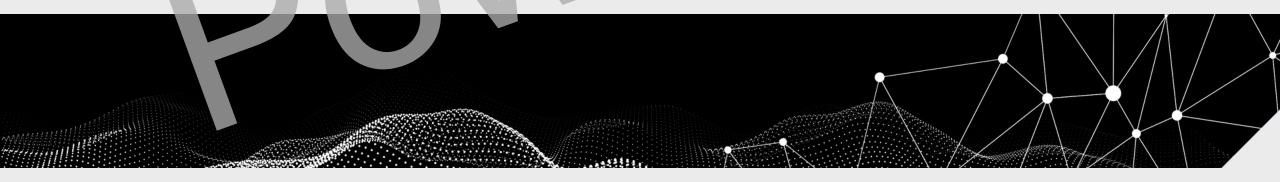
Westin, Southfield, MI | Thursday, June 5, 2025

We pioneer motion

Agenda

SCHAEFFLER


1 OVERVIEW OF SCHAEFFLER


2 DESIGN CONSIDERATIONS

3 SCRIPTING WITH JMAG DESIGNER

4 AFM DESIGN OPTIMIZATION

5 CONCLUSION

Accelerated Multi-Criteria Design Optimization of AFM with 3D FEA

Overview of Schaeffler

OVERVIEW OF SCHAEFFLER

SCHAEFFLER

Four Divisions of Schaeffler

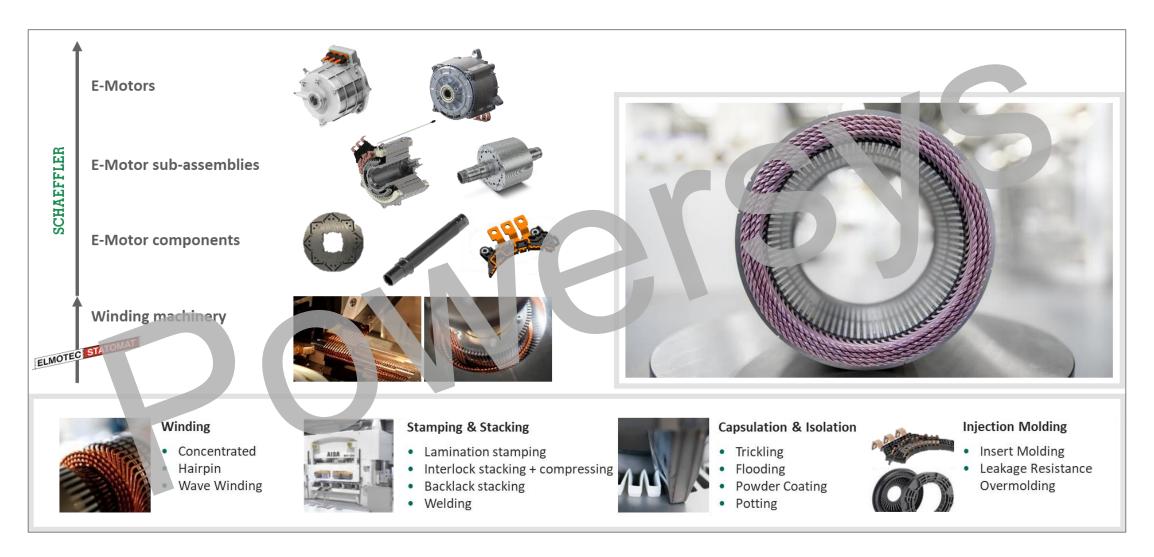
E-Mobility

Modular and scalable solutions for all types of electric drives.

Powertrain & Chassis

Innovative solutions for powertrain and chassis systems.

Vehicle Lifetime Solutions


Tailored solutions for the mobility ecosystem.

Bearings & Industrial Solutions

Products and solutions for the industry of the future.

Local Vertical Integration

SCHAEFFLER OVERVIEW OF SCHAEFFLER

e-Motor Products - Americas

48 V P1	400 V P2	400 V P3 (DHT)	400 V P4	800 V P4	800 V P4	800 V P4
Concentrated Winding	Concentrated Winding	Hairpin Winding	Hairpin Winding	ASM Hairpin Winding	Cont. Hairpin Winding	Hairpin Winding
OD 305 mm / AL 37 mm	OD 273 mm / AL 34 mm	OD 253 mm / AL 68 mm	OD 220 mm / AL 130 mm	OD 220 mm / AL 140 mm	OD 240 mm / AL 90 mm	OD 280 mm / AL 171 mi
20 kW / 13 kW	66.5 kW / 35 kW	120 kW / 75 kW	115 kW / 70 kW	225 kW / 80 kW	170 kW / 127 kW	310 kW / 180 kW
200 Nm / 97 Nm	196 Nm / 90 Nm	316 Nm / 227 Nm	306 Nm / 175 Nm	450 Nm / 110 Nm	340 Nm / 230 Nm	1000 Nm / 600 Nm
48 V		400V			800 V	
20 kW			125 kW			> 300 kW
Water cooled	Oil	cooled	Water cooled	Oil cooled		Water cooled

+ Advanced innovation projects: EESM, rare-earth-free PMa SynRM, AFM, IM, etc.

Rare-Earth-Free PM Motors

Rare-Earth PM Solutions

NdFeB, SmCo, SmFeN

PMa SynRM

SCHAEFFLER
EMR Family

AFM

2025+ Activities

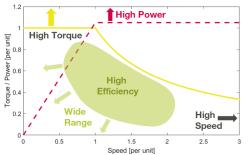
Project REFORM (NSERC-Mitacs)

Rare-Earth-Free PM Solutions

Ferrites, FeN, MnBi

- Standard solution in automotive sector
 - Highest power density
- Price volatility of NdFeB magnets
 - Uncertainty, supply chain risks
 - Sustainability concerns

- Ongoing investigation of alternative solutions
 - R&D over a wide spectrum: reduced & rare-earth-free PM
- Reduced reliance on rare-earth PMs
- Targeting future N.A. market
- More sustainable choices

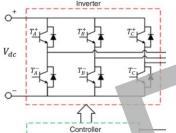

Accelerated Multi-Criteria Design Optimization of AFM with 3D FEA Design Considerations

SCHAEFFLER DESIGN CONSIDERATIONS

Physical

Limits

Traction Electric Motors



- · Torque-speed
- Power-speed
- Back EMF
- Efficiency Perform. **Metrics**

- Outer diameter
- Axial length
- Critical ratios

Part eing

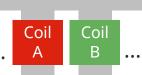
- Conductor area
 - Magnet dimensions
- Magnet segmentation
- · Lamination dimensions

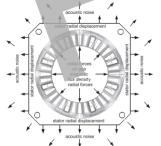
Phase current

DC link voltage

Switching freg.

Inverte Limits




NVH

 Current density Number of layers Winding

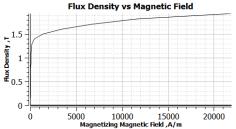
Winding layout

Parallel paths

Cogging torque

Acoustic noise

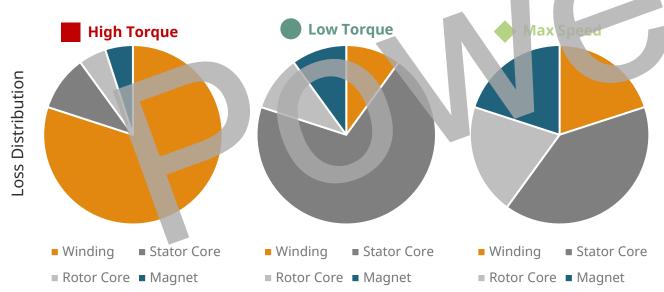
Campbell diagram

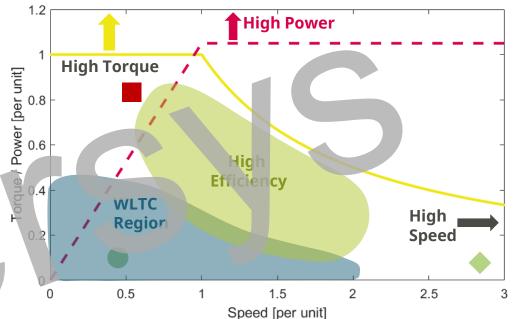

Vibration harmonics

Material Property

- BH magnetic curves
- Power loss curves
- Max. energy product
- Demagnetization
- Sustainability

Design

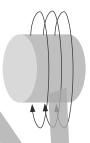




Public

Importance of Multi-Criteria Optimization

- Conflicting tradeoffs for design objectives
 - Peak torque vs. Peak power vs. Efficiency vs. ...
- Distinct loss distribution for different operating points
 - Depends on e-motor topology (PMSM, IM, EESM)
 - Insufficient overlap of high efficiency & WLTC regions



Challenges of Designing Axial Flux Motors

Radial Flux Motors (industry standard)

4th generation EMR e-axle drive

as Mura Poles

∝ Num. Poles

Speed $\propto 1$ / (Length \times Num. Turns)

• Different topologies in-production

Can scale by varying

same cross-section

Standard process for

mass-manufacturing

stack length & keeping

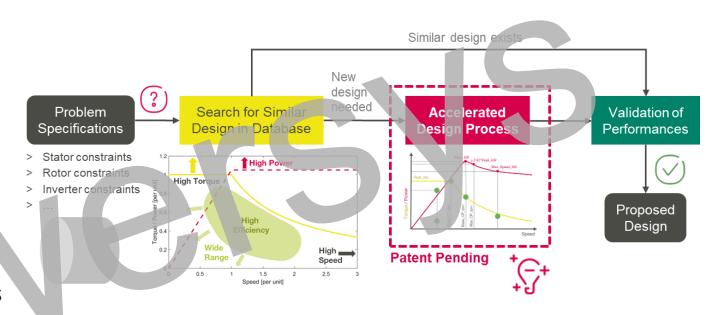
Axial Flux Motors (alternative technology)

Prototype display of rotor-stator-rotor **AFM** concept

Torque ∝ Diameter³

∝ Supply Current

∝ Num. Poles


Speed ∝ 1 / Num. Turns

- Scaling not as straightforward...
- New manufacturing processes needed
- Mostly yokeless stator & surfacemounted PM rotor

Accelerated Design Process

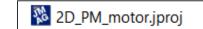
- Accelerated Design Process tailored for traction electric machines (RFM & AFM)
- Thousands of designs in significantly less time than typical approaches
- Rapid development of new designs for various applications
- Incorporates physical targets & constraints & target any set of requirements
- Open to partnership & collaboration on existing R&D projects

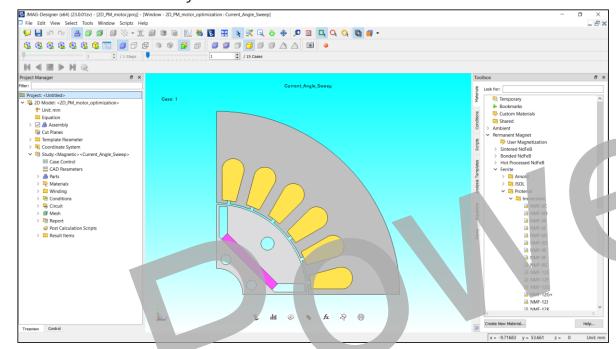
Reduced Time to Design Motors for New Applications!

Accelerated Multi-Criteria Design Optimization of AFM with 3D FEA

Scripting with JMAG Designer

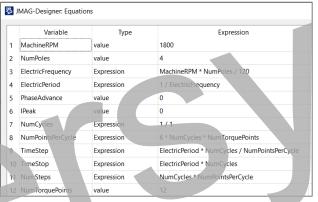
2D Model Setup





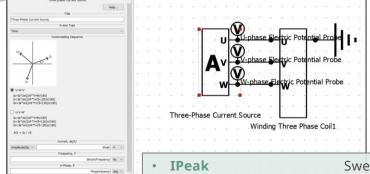
SCHAEFFLER

1) 2D Model from JMAG Example PM Motor >> 2D Analysis



3) Transient Time Step Setting

2) Equations for Parameter Sweep

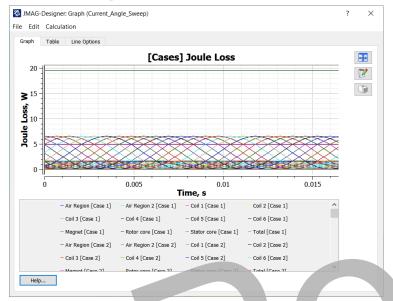


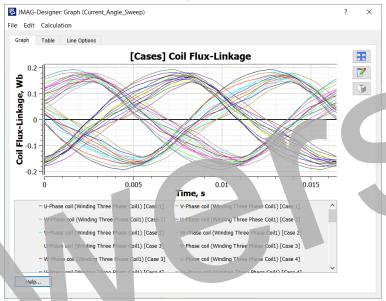
- MachineRPM
- IPeak
- PhaseAdvance
- TimeStep
- NumSteps

5) Create Cases for Current & Angle Sweep

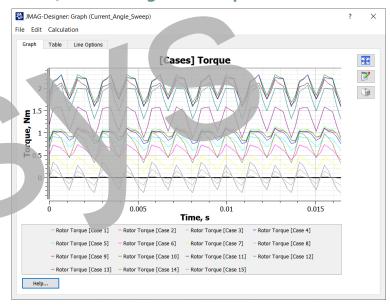
Parametric 3-Phase Current-Driven Source

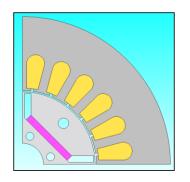
- IPeak
 PhaseAdvance
 Sweep 0: 2: 4 A (1+2 variations)
 Sweep 00: 150: 900 (7 variations)
- Number of cases 1 + 2*7 = 15 cases (1 for 0 A case)

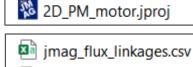




2D Model Run


7a) Joule Losses for All Cases


7b) Flux Linkages for All Cases

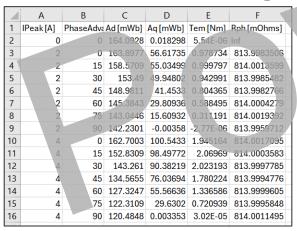


7c) Electromagnetic Torque for All Cases

- 6. Sweep input excitation & run all cases with JMAG Scheduler
 - a) Variations of IPeak & PhaseAdvance
 - b) Distribute cases over SMP
- 7. Save time-domain results as CSV files
 - a) Extract Joule loss to calculate phase resistance
 - b) Extract Coil Flux-Linkage to calculate DQ flux linkages
 - c) Extract **Torque** to verify DQ torque

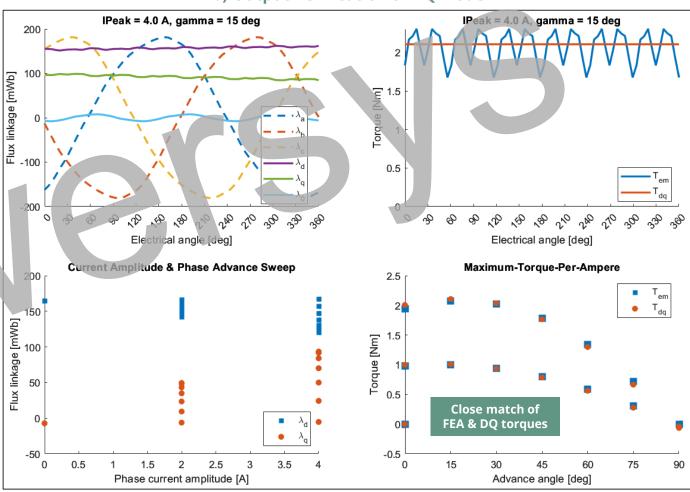
- imag_inputs.csv
- imag_joule_losses.csv
- jmag_torque.csv

2D Model Scripting & Post-Processing via MATLAB




SCHAEFFLER

8) MATLAB Interface to JMAG V23.0


```
%% Load JMAG Model V23.0
if config.solve_jmag==1
    designer = actxserver('designer.Application.230');
   designer.Show();
   designer.Load(motor_data.path_project + motor_data.model_name)
    app = designer;
                                                            Successful implementation of
    app.GetModel(0).GetStudy(0).CheckForNewResults()
                                                            scripting in MATLAB & Python
   designer.SetCurrentStudy(0)
   designer.GetModel(0).GetStudy(0).RunAllCases()
   designer.GetModel(0).GetStudy(0).GetDesignTable().Export(motor_data.path_project + "jmag_inputs.csv")
   designer.GetDataManager().GetGraphModel(0).WriteTable(motor data.path project + "imag flux linkages.csv")
   designer.GetDataManager().GetGraphModel(1).WriteTable(motor_data.path_project + "jmag_joule_losses.csv")
   designer.GetDataManager().GetGraphModel(2).WriteTable(motor data.path project + "jmag torque.csv")
    app.Quit()
```

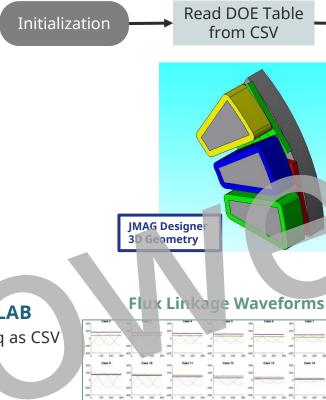
9) DQ Table for Post-Processing

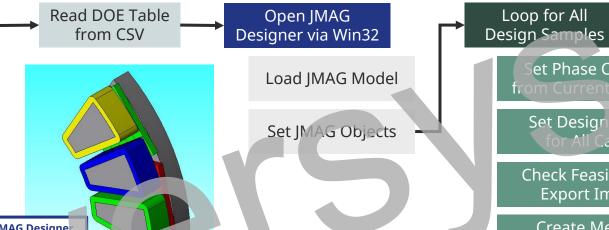
10) Output Verification of DQ Model

Extending Procedure to 3D AFM Model

SCHAEFFLER

Saved Data from JMAG

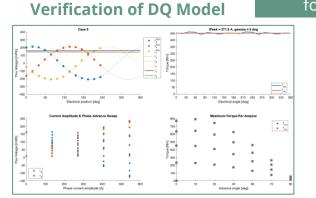

- · Geometry image as PNG
- Input design table as CSV
- Phase flux linkages as CSV
- Phase currents as CSV
- Phase voltages as CSV
- Electrical power as CSV
- Electromagnetic torque as CSV
- Ioule losses as CSV
- Iron losses as CSV
- Hysteresis losses as CSV


Post-Processed Data using MATLAB

- Magnetostatic / Magnetotransient dq as CSV
- Part volumes as CSV

Simulation Overview

- Current & phase advance swept well
- Close match between FEA & DQ torques
- Stable flux linkages with 1D interpolation


et Phase Current from Current Density

Set Design Table or All Cases

Check Feasibility & **Export Image**

Create Mesh & Run for All Cases

Export CSV Results for All Cases

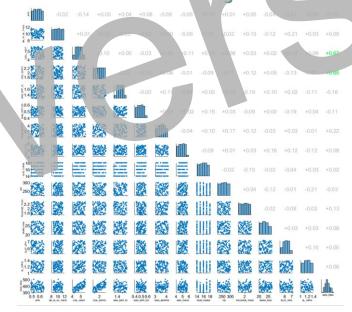
JM

SCHAEFFLER

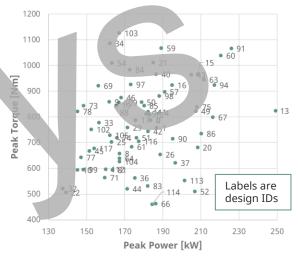
Test Sample Run for 3D AFM Model

14 Independent Design Variables

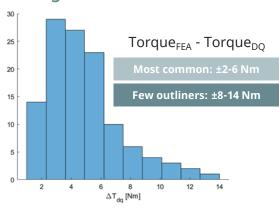
Outer diameter, Aspect ratio, Slot opening, Pole shoe thickness,
 Coil height, Coil width, Number of turns, Rotor back iron thickness,
 PM ID/OD offsets, PM separation, PM thickness, Skew angle, etc.


Latin Hypercube Sampling

- 100 samples, ±15% variation around baseline
- Peak current density: 40 A_{rms}/mm²
- Integer number of turns


Simulation Observations

- 13 steps over 2/3rd e-period for 1+4x7=29 points
 - Phase current: [0%, 25%, 50%, 75%, 100%]
 - Phase advance: [0º,15º, 30º,, 75º, 90º]
- 35 mins on average w/12 SMP & 1 job
 - 24 physical cores, 32 logical cores
 - Can improve via parallelization of cases & simulation settings


Correlation Plot of Design Variables

Initial Post-Processed Results

Histogram of MTPA Deviations

Accelerated Multi-Criteria Design Optimization of AFM with 3D FEA

AFM Design Optimization

Optimal

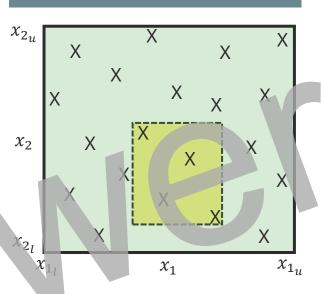
Design

Design Process Overview

Problem Specifications

Global Design Search

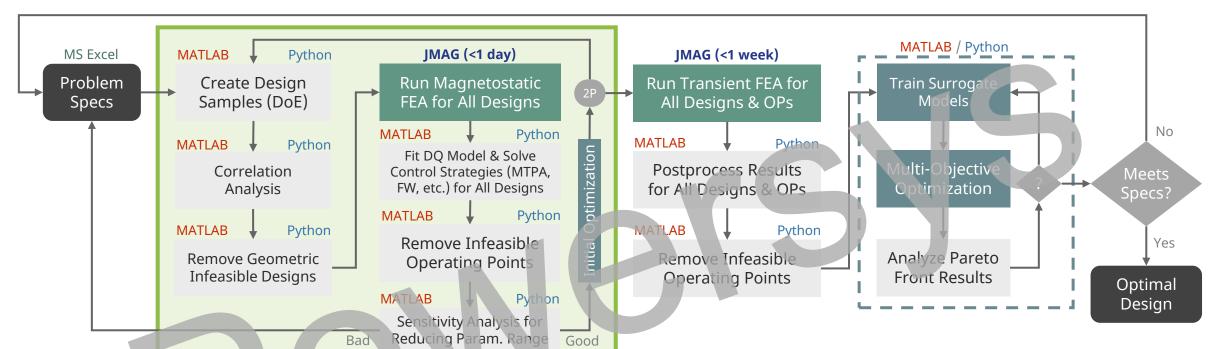
Coarse Model (e.g., Magnetostatic)


Perform Statistical Analysis for Design Space Reduction

Local Design

Sea

Motivation


- Global design search enables exploring a wide design space to help eliminate non-interesting design regions
 - Use coarse & cheap model to quickly evaluate KPI's (e.g., magnetostatic)
- High-performing regions identified via statistical analysis
- Reduced design space resampled for a local design search using a finer model
 - Use computational budget effectively in a relevant design region

Fine Model (e.g., Magnetotransient) x_{2} x_{2u} x_{2u}

Example problem with 2 design variables Each X represents a sample (design variation)

Multi-Stage Process for Design Optimization

Requirements

- Torque/power density
- Magnet mass
- Efficiency...

Operating Points

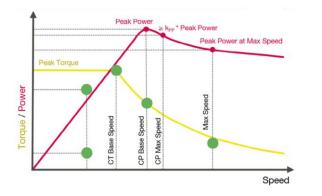
- 1. Peak torque
- 2. Max speed
- 3. Partial load (WLTC)

Verify Range of Constraints

- Stator outer diameter
- Magnet mass
- ...

<u>Design Parameters</u>

- Stator/Rotor geometry
- Material properties
- ..


Evaluate KPI's

- Average torque
- Torque/power density
- Phase voltage
- Losses (Cu DC)
- Cost functions
- ...

Evaluate KPI's

- Average torque
- · Torque ripple
- Power factor
- Phase voltage
- Losses (Cu, Fe, PM)
- Demagnetization

• ...

Public

DQ Model for Post-Processing Results

SCHAEFFLER

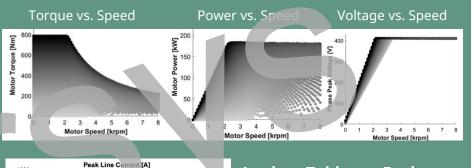
1) FEA Magnetostatic

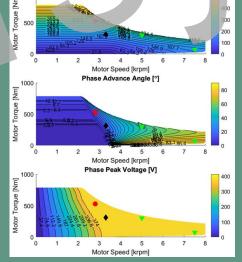
Axial Flux PMSM (JMAG Designer 3D)

Modeled by Ajith P. K. (SAG Germany)

2) Nonlinear DQ Data

Inputs: DQ current sweep I_d , I_a (needed for saturation & cross-coupling effects)


DQ flux linkages λ_d , λ_a Phase resistance R_s


Outputs:

Strategies

4) Solve Control

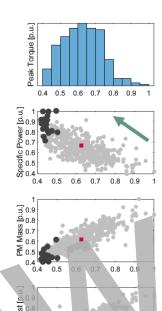
5) Performance Curves

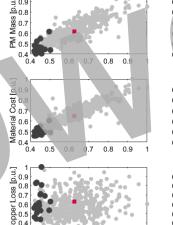
Lookup Tables to Evaluate Different Operating Points

- Consider different gear ratios for representative operating conditions
- Check for **feasibility** of operating points (OPs)
- Ignore a design if OPs are not feasible!

M. H. Mohammadi and D. A. Lowther, "A Computational Study of Efficiency Map Calculation for Synchronous AC Motor Drives including Cross-Coupling and Saturation Effects," IEEE Transactions on Magnetics, vol. 53, no. 6, Jun. 2017.

Note: A random design sample is shown as an example

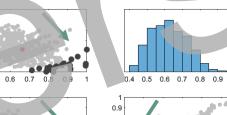

Visualizing Tradeoffs of KPIs

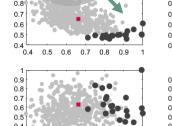

Simulation Statistics

- 14 independent design variables
- 90+ KPIs computed using DQ models, part volumes & masses, losses, material pricing, desired OPs, etc.
- 487 design samples from 3D FEA
 - 1 simulation week on 2 towers
 - 457 feasible designs in grey (OPs met)

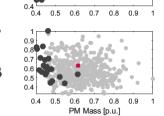
Correlation Plot of KPIs

- Lower diagonal: pairwise scatter plots
 - Baseline design as red square
 - 21 optimal designs as black circles
- <u>Diagonal</u>: histograms of KPIs
- <u>Upper diagonal</u>: Spearman correlation coefficients (positive, negative)

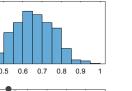


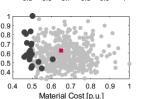


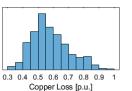
Peak Torque [p.u.]



Specific Power [p.u.]







Can set other objectives & filters to select designs for different targets

Accelerated Multi-Criteria Design Optimization of AFM with 3D FEA Conclusion

