
How to harness the
power of Python
programming within the
Simba simulation
environment
By Peyman Razmi

March 28th, 2024

AGENDA

How to harness
the power of
Python
programming
within the Simba
simulation
environment

o Introduction to Python Programming

o Python environment and Libraries

o Introduction to Simba environment,

its capabilities

o Power electronic simulation in Simba

o Management of Simba Simulation

with Python

o Introduction to Julia programming in

Simba simulation

2Merging Power Systems and Power Electronics for Smart Grids
with SIMBA, Python, and Julia

3Merging Power Systems and Power Electronics for Smart Grids
with SIMBA, Python, and Julia

What is Python?

Python is a popular high-level
programming language used in various
applications

• Python is an easy language to learn
because of its simple syntax

• Python can be used for simple tasks
such as plotting or for more complex
tasks like Algebra programming,
optimization and machine learning
algorithms.

Introduction to Python

4Merging Power Systems and Power Electronics for Smart Grids
with SIMBA, Python, and Julia

Many languages require you to compile (translate) your program into a
form that the machine understands.

Python is instead directly interpreted into machine instructions.

Python

The interpreter provides an interactive environment to play with the language

Variables, Objects, and Classes

5Merging Power Systems and Power Electronics for Smart Grids
with SIMBA, Python, and Julia

• A variable is a reference to a value stored in a computer’s memory.

• Variables can be sorted into a variety of categories (or data types) such as
numbers (int/float etc), Boolean values (true/false), and sequences (strings, lists
etc).

• An object is a collection of data from a computer’s memory that can be
manipulated.

Number String Boolean

X=3 Name = ‘Peyman’ isFinished = True

Object Example

6Merging Power Systems and Power Electronics for Smart Grids
with SIMBA, Python, and Julia

• Color: The color of the car (e.g., red, blue, black).
• Make: The manufacturer of the car (e.g., Ford).
• Model: The model name or number (e.g., Camry, F-150, X5).
• Year: The manufacturing year of the car.
• Engine Size: The size of the engine (e.g., 2.0L, 3.5L).
• Fuel Type: The type of fuel the car uses (e.g., gasoline, diesel, electric).
• Mileage: The number of miles or kilometers the car has traveled.
• IsNew: A boolean variable indicating whether the car is new or used.

Classes

• The definition of the class
provides a blueprint for all
the objects within it
(instances).

• Instances may share the
same variables (color, size,
shape, etc.), but they do
NOT share the same values
for each variable
(blue/red/pink, small/large,
square/circular etc.)

7Merging Power Systems and Power Electronics for Smart Grids
with SIMBA, Python, and Julia

A class is a collection of
objects who share the same
set of variables.

Methods

8Merging Power Systems and Power Electronics for Smart Grids
with SIMBA, Python, and Julia

Methods are the functions used to act on/alter an object’s data.
They describe what your object can “do.”

Methods define actions or behaviors that the car can perform

Start() Initiates the car's
engine

Stop() Stops the car's
engine

Accelerate() Increases the car's
speed

Brake() Decreases the car's
speed

Dashboard() Displays info about Current
Status

Functions

9Merging Power Systems and Power Electronics for Smart Grids
with SIMBA, Python, and Julia

Scientific Computing
• Numpy
• Pandas
• Scipy
• Matplotlib

Machine Learning AI
• SckitLear
• TensorFlow
• Keras
• Pythorch

Python Libraries

10Merging Power Systems and Power Electronics for Smart Grids
with SIMBA, Python, and Julia

SIMBA Platform
Simba is a software platform used for
simulating power electronics and
motor drives. It provides tools and
features for modeling and analyzing
electrical systems and components,
allowing engineers and researchers to
simulate the behavior of power
electronic circuits and motor drive
systems.

Simba Simulation Environment

11Merging Power Systems and Power Electronics for Smart Grids
with SIMBA, Python, and Julia

Simba Simulation Environment

12Merging Power Systems and Power Electronics for Smart Grids
with SIMBA, Python, and Julia

Buck-Boost Converter

 Simba Environment

 Python programming

Analysis

Required components/Elements

13Merging Power Systems and Power Electronics for Smart Grids
with SIMBA, Python, and Julia

Design Buck-Boost Converter

14Merging Power Systems and Power Electronics for Smart Grids
with SIMBA, Python, and Julia

15Merging Power Systems and Power Electronics for Smart Grids
with SIMBA, Python, and Julia

Python Programming and Import Designed simulation

16Merging Power Systems and Power Electronics for Smart Grids
with SIMBA, Python, and Julia

Required Libraries

Import created design

 script_folder =
os.path.realpath(os.path.dirname(__file__)):

This line finds the real path of the directory
where our current Python script is located.

 file_path = os.path.join(script_folder,
"ConPro.jsimba"):

Here, we're creating the full path to our
Simba project file, ‘Proj3.jsimba', by joining
the script's folder path with the project file's
name.

 project = JsonProjectRepository(file_path):
Lastly, this line loads our Simba project file
into the Python script using a class called
JsonProjectRepository. By doing this, our
script can directly interact with the project,
allowing for manipulation, analysis, or
automation within the Simba environment."

Python Programming Explanations

17Merging Power Systems and Power Electronics for Smart Grids
with SIMBA, Python, and Julia

Plotting code
with Matplot

Command Transient Analyze

Define Output

Parameter Sweep in Simba

18Merging Power Systems and Power Electronics for Smart Grids
with SIMBA, Python, and Julia

A "Parameter Sweep" is a process in which a series of simulations are run while
systematically varying the parameters of a model to analyze the effects on its
behavior or performance.

Parameter Sweep in Simba environment R= 1Ω 100Ω

Parameter Sweep with python code

19Merging Power Systems and Power Electronics for Smart Grids
with SIMBA, Python, and Julia

R = np.arange(1, 100, 10/30)
ILs = []
for RR in R:
R2 = BuckBoostConverter.Circuit.GetDeviceByName('R1')

R2.Value=RR
Run calculation
job = BuckBoostConverter.TransientAnalysis.NewJob()
status = job.Run()
Retrieve results
t = np.array(job.TimePoints)
IL = np.array(job.GetSignalByName('L2 - Current').DataPoints)
Average output voltage for t > 5ms
indices = np.where(t >= 0.005)
IL = np.take(IL, indices)
IL = np.average(IL)
Save results
ILs.append(IL)

Julia libraries in Simba

20Merging Power Systems and Power Electronics for Smart Grids
with SIMBA, Python, and Julia

using PyCall
using PyPlot

Import Python libraries in Julia
aesim = pyimport("aesim.simba")
os = pyimport("os")
np = pyimport("numpy")

	Diapositive numéro 1
	Diapositive numéro 2
	Diapositive numéro 3
	Introduction to Python
	Variables, Objects, and Classes
	Object Example
	Classes
	Methods
	Diapositive numéro 9
	Diapositive numéro 10
	Simba Simulation Environment
	Simba Simulation Environment
	Required components/Elements
	Design Buck-Boost Converter
	Diapositive numéro 15
	Python Programming and Import Designed simulation
	Python Programming Explanations
	Parameter Sweep in Simba
	Parameter Sweep with python code
	Julia libraries in Simba

