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o Introduction to Python Programming

o Python environment and Libraries 

o Introduction to Simba environment, 

its capabilities 

o Power electronic simulation in Simba 

o Management of Simba Simulation 

with Python

o Introduction to Julia programming in 

Simba simulation
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What is Python?

Python is a popular high-level 
programming language used in various 
applications

• Python is an easy language to learn 
because of its simple syntax

• Python can be used for simple tasks 
such as plotting or for more complex 
tasks like Algebra programming, 
optimization and machine learning 
algorithms.



Introduction to Python
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Many languages require you to compile (translate) your program into a 
form that the machine understands.

Python is instead directly interpreted into machine instructions.

Python

The interpreter provides an interactive environment to play with the language



Variables, Objects, and Classes 
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• A variable is a reference to a value stored in a computer’s memory. 

• Variables can be sorted into a variety of categories (or data types) such as 
numbers (int/float etc), Boolean values (true/false), and sequences (strings, lists 
etc). 

• An object is a collection of data from a computer’s memory that can be 
manipulated. 

Number String Boolean

X=3 Name = ‘Peyman’ isFinished = True



Object Example

6Merging Power Systems and Power Electronics for Smart Grids 
with SIMBA, Python, and Julia

• Color: The color of the car (e.g., red, blue, black).
• Make: The manufacturer of the car (e.g., Ford).
• Model: The model name or number (e.g., Camry, F-150, X5).
• Year: The manufacturing year of the car.
• Engine Size: The size of the engine (e.g., 2.0L, 3.5L).
• Fuel Type: The type of fuel the car uses (e.g., gasoline, diesel, electric).
• Mileage: The number of miles or kilometers the car has traveled.
• IsNew: A boolean variable indicating whether the car is new or used.



Classes

• The definition of the class 
provides a blueprint for all 
the objects within it 
(instances). 

• Instances may share the 
same variables (color, size, 
shape, etc.), but they do 
NOT share the same values 
for each variable 
(blue/red/pink, small/large, 
square/circular etc.)
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A class is a collection of 
objects who share the same 
set of variables. 



Methods
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Methods are the functions used to act on/alter an object’s data. 
They describe what your object can “do.” 

Methods define actions or behaviors that the car can perform

Start()                        Initiates the car's
engine

Stop()                       Stops the car's 
engine

Accelerate()         Increases the car's 
speed

Brake()                    Decreases the car's 
speed

Dashboard() Displays info about Current 
Status   

Functions
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Scientific Computing
• Numpy
• Pandas
• Scipy
• Matplotlib

Machine Learning AI
• SckitLear
• TensorFlow
• Keras
• Pythorch

Python Libraries
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SIMBA Platform
Simba is a software platform used for 
simulating power electronics and 
motor drives. It provides tools and 
features for modeling and analyzing 
electrical systems and components, 
allowing engineers and researchers to 
simulate the behavior of power 
electronic circuits and motor drive 
systems.



Simba Simulation Environment
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Simba Simulation Environment
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Buck-Boost Converter

 Simba Environment

 Python programming

Analysis



Required components/Elements
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Design Buck-Boost Converter
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Python Programming and Import Designed simulation
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Required Libraries

Import created design

 script_folder = 
os.path.realpath(os.path.dirname(__file__)):

This line finds the real path of the directory
where our current Python script is located.

 file_path = os.path.join(script_folder, 
"ConPro.jsimba"):

Here, we're creating the full path to our
Simba project file, ‘Proj3.jsimba', by joining
the script's folder path with the project file's
name.

 project = JsonProjectRepository(file_path):
Lastly, this line loads our Simba project file
into the Python script using a class called
JsonProjectRepository. By doing this, our
script can directly interact with the project,
allowing for manipulation, analysis, or
automation within the Simba environment."



Python Programming Explanations
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Plotting code 
with Matplot

Command Transient Analyze

Define Output



Parameter Sweep in Simba
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A "Parameter Sweep" is a process in which a series of simulations are run while 
systematically varying the parameters of a model to analyze the effects on its 
behavior or performance.

Parameter Sweep in Simba environment R= 1Ω 100Ω



Parameter Sweep with python code
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R = np.arange(1, 100, 10/30)
ILs = []
for RR in R:
R2 = BuckBoostConverter.Circuit.GetDeviceByName('R1')

R2.Value=RR
# Run calculation
job = BuckBoostConverter.TransientAnalysis.NewJob()
status = job.Run()
# Retrieve results
t = np.array(job.TimePoints)
IL = np.array(job.GetSignalByName('L2 - Current').DataPoints)
# Average output voltage for t > 5ms
indices = np.where(t >= 0.005)
IL = np.take(IL, indices)
IL = np.average(IL)
# Save results
ILs.append(IL)



Julia libraries in Simba
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using PyCall
using PyPlot

# Import Python libraries in Julia
aesim = pyimport("aesim.simba")
os = pyimport("os")
np = pyimport("numpy")
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